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1. Introduction. An Hadamnard matrix is a square matrix of ones and minus ones 
whose row (and hence column) vectors are orthogonal. The order n of an Hadamard 
matrix is necessarily 1, 2 or 4t, with t a positive integer. It has been conjectured that 
this condition (n = 1, 2 or 4t) also insures the existence of an Hadamard matrix of 
that order. Constructions have been given for particular values of n and even for 
various infinite classes of values. While other constructions exist, those given in 
[1]-[8] exhaust the known values of n. In particular, R. E. A. C. Paley [5] gave 
construction methods for various infinite classes of Hadamard matrices and in- 
dicated for each value of n = 4t ? 200 a construction which would supply an 
Hadaniard matrix of that order with the exceptions n = 92, 116, 156, 172, 184, 
188. Since then matrices have been found for n = 92, 156, 172, 184 [1, 2, 7], leaving 
Paley's list still incomplete. It is interesting to note that the matrices which removed 
92, 156, 172, 184 from the unknown category are all related to a construction given 
by Williamson [7]. The main purpose of this paper is to present a complete tabula- 
tion of all the known Hadamard matrices of this Williamson type for n = 4t, t odd. 
Since an Hadamard matrix of order 2n = 2(4t) can easily be constructed from one 
of order n, the question of existence for all possible orders can be reduced to the case 
where t is odd. Thus, it is interesting to note that Hadamard matrices having the 
additional structure imposed by Williamson exist for all odd values of t ? 27 and, 
in particular, that this includes every value of t for which an exhaustive search has 
been performed. 

2. Williamson Type and Related Hadamard Matrices. An Hadamard matrix 
which has the form, 

A B C D 

(2.1) H -B A -D C 
-C D A -B' 

-D -C B A 

is said to be of the quaternion type, since, using the quaternion units, 

1 0 0 0 0 1 0 0 
0 1 0 0 -1 0 0 0 

e-0 0 10 00 -1 , 

0 0 0 1 0 01 0 

0 0 1 0 0 0 0 1 
0 00 1 k 00 1 0 

3 -1 000 0 1 0 0, 
0 -1 0 0 -1 0 0 0 
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we may express H as A ? e + B ? i + C (? j + D ? k, where ( stands for the 
"direct" or "Kronecker" product of matrices. If we assume that A, B, C, D are 
symmetric matrices, the Hadamard property HHT = nI reduces to the equations 

(2.2) A2 + B2 + C2 + D2 = nI, 

and 

BA-AB + DC-CD = O. 

(2.3) CA - AC +BD-DB = O, 

DA-AD + CB-BC = O. 

Thus, in particular, if A, B, C, D are symmetric matrices of ones and minus ones 
which satisfy (2.2) and which are commutative in pairs, then the associated matrix 
H of equation (2.1) will be Hadamard. We note that any matrix of this type gener- 
ates an infinite class of such matrices, specifically: 

THEOREM 1. Let H be an Hadamard matrix of the quaternion type of order n = 4t, 
with A, B, C, D symmetric matrices which are commutative in pairs. Then there exist 
such matrices of orders 2tn for i = 1, 2, 3, 

Proof. Let 

ARB A -B C D C -D 
a 

BA =-B A 
' 

y DC' D C: 

then a, (,, A5 are symmetric matrices which are commutative in pairs. Further, 
a, ,, satisfy (2.2), that is, a2 + 2 + ,2 + 52 = 2n1. Hence, 

a 3 ly a 

H _0 a -5 l 
- -y 5 a x - 
-s -y 0 a 

is an Hadamard matrix of order 2n. Clearly this process may be iterated to provide 
matrices of all the indicated orders. This theorem certainly is not significant with 
respect to the general existence problem for Hadamard matrices, as it has long been 
known that the existence of an Hadamard matrix of order n implies the existence of 
those of orders 2tn for i = 1, 2, 3, . Its significance lies in the fact that quaternion 
type Hadamard matrices can be constructed for these orders also. 

If we insist (as did Williamson [7]) that A, B, C, D be symmetric circulants satis- 
fying equation (2.2), we get a class of Hadamard matrices, which we call the 
Williamson type. Thus, Williamson type matrices form a subclass of the quaternion 
type Hadamard matrices. In a Williamson type matrix A, B, C, D and I are simul- 
taneously diagonalizable, and applying this transformation to equation (2.2) yields 
the equation 

Eai coi+ Ebi o 
+ 

Eci W + Edi =/ 4t, 

which must hold for each of the tth roots of unity coj, where the as, bi, ci, di com- 
prise the first rows of A, B, C, D, respectively. Now, restricting ourselves to odd 
values of t and normalizing so that ao = bo = co = do = +1, we can show [7, p. 73] 
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c~~~ 3C~C 

-t a I 

>C93 3 3 q 
cq c N q : 

c9 IC, 

11Z l+ t+ +61 + -3 1 
3 33 3 3 3 3 ;3 3 1 ;> 

cN c^1 cT r.14 cq CJ ?CT CIA rC14 N; 

I 11| + ++ t+3-C + c3 + 

3 a3 Cq 3 
I I I K 3 33 3 3 3~ 3 3 FS 

>3 3>3 >> tq 3C' 3 - it d 

-t++ ++ + 3 +tC3 I 

3 3 3 3 3 3 ;3 ? 3 3 
cs cq N es cjl c l cs ?/ m O~S N cl 

+ ++ I+ ++c c 4 3+t- 
* * _- - 4 - :- 1- rt- 

I I I II 

CI N ci N _ T C _ 
+ Gii ++ ii 

3 3 33 3 3 3 cqc 

+c+++ I-+ + ++ 

> >3 33'C 33 3 

C] C]C]C] ~~~C~C] C C] 

cs c sc oo c4 csl o c 1l 

+ F++-F + _+Cq + + 
-4 1-i - - z -q -4 - -- 

C14 N4 NT cq CS N CN C + 

+ + ++ F + + ++? 
t4 4,# t4 C9 < 2 C,) 4 IN 

+I +Y +++ VD Lo r 3 

N Cil N4 N4 N C, C4 Cl a' - C~~~~~C~~~iC ~ ~ ~ C -C -F 1-I-i- 
?X r-q -- 

00 m C) :-i) C ) tI _____________-_ 3 33 

C] CS S N ]c C oo c C m 1111 



446 L. D. BAUMERT AND MARSHALL HALL, JR. 

A A A B -B C -C -D B C -D -D 
A -A B -A -B -D D -C -B -D -C -C 
A -B -A A -D D -B B -C -D C -C 
B A -A -A D D D C C -B -B -C 
B -D D D A A A C -C B -C B 
B C -D D A -A C -A -D C B -B 

H= D -C B -B A -C -A A B C D -D 
-C -D -C -D C A -A -A -D B -B -B 

D -C -B -B -B C C -D A A A D 
-D -B C C C B B -D A -A D -A 

C -B -C C D -B -D -B A -D -A A 
-C -D -D C -C -B B B D A -A -A 

FIGURE 1 

that exactly three of the ai, bi, ci, di have the same sign, i 5 0. Thus, from 
a2 + b2 + c2 + d2 = 4t, with 

t-1 t-1 t-1 t-1 

a= E aico, b= ZbNW', c= E cii, d= Z dico, 
i=O i=O i==O i=O 

we get 

(a + b + c - d)2 + (a + b - c + d)2 

+ (a - b + c + d)2 + (-a + b + c + d)2 = 16t, 

and, hence, a representation, 

(2.4) T1 + T2 + T3 + T42 = 4t, 

where each Ti is of the form 1 I 2wcj ' k + * and each power of co occurs in 
exactly one of the Ti . Note that if we let co = 1, then equation (2.4) gives us a 
representation of 4t as the sum of 4 odd squares. 

3. Table of Williamson Type Hadamard Matrices. Williamson [7] lists many 
solutions of equation (2.4) but does not indicate when all solutions for a particular 
t (or for a particular representation of 4t as a sum of 4 squares) is listed. For this 
reason we recomputed Williamson's table (in connection with the work of [1]) and 
extended it somewhat. In particular, all solutions for all representations of 4t as a 
sum of 4 odd squares are given for all odd t, 3 < t _ 23. In addition, some solutions 
are given for t = 25, 27, 37, 43. This exhaustive listing points up the fact that not 
all such representations of 4t give rise to Hadamard matrices, see t = 19 or t = 23. 

In the table the 4 squares are labeled A, B, C, D, respectively and coi = co + C t0i 

4. Paley's Exceptional Values (92, 156, 172, 184). Williamson type Hadamard 
matrices of orders 92 and 172 can be read from the table directly. As 184 = 2(92), an 
Hadamard matrix of this order can be constructed from the H92. This is most easily 
done by the Kronecker product H184 = H2 ? H92. However, more specialized con- 
structions may be used, that is, we can use Theorem 1 to provide us with a quater- 
nion type matrix or we can use Theorem 3 of Williamson [7, p. 77] to provide us with 
a Williamson type Hadarnard matrix of this order. We note in passing that Theorem 
3 of Williamson can only be applied to provide such matrices of orders 8t when t is 
odd and Williamson type solutions are known for n 4t, whereas our Theorem 1 
provides quaternion matrices of all orders 2'+2t, i 1, 2, 3, , provided such 
exist for n = 4t. 
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The remaining solution 156 = 3*4*13 is less obvious. In [2] it is shown that an 
Hadamard matrix of order 12t exists whenever a Williamson type matrix of order 
4t is known. (Actually, a quaternion type with A, B, C, D symmetric and commuting 
in pairs will suffice.) For 156, we use A, B, C, D from a Williamson matrix of order 
52 = 4*13 (see Table 1) and build the solution by inserting them into the matrix 
of Figure 1. Note that here the resulting matrix, while Hadamard, is not obviously 
of the quaternion type, much less a Williamson matrix. 
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